

Editorial

Bridging IARC Guidance to Practice: Implementation of *Helicobacter pylori* Screen-and-Treat Strategies for Gastric Cancer Prevention

Can-Lin Hong[#], Zong-Chao Liu[#] and Wen-Qing Li^{*}

State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, China

Received: November 18, 2025 | Revised: November 25, 2025 | Accepted: December 10, 2025 | Published online: December 18, 2025

Gastric cancer (GC), the fifth most common cancer and fifth leading cause of cancer-related mortality worldwide, remains a significant public health challenge.¹ Chronic infection with *Helicobacter pylori* (*H. pylori*) is a predominant etiological driver of gastric tumorigenesis.² Accumulating evidence from randomized controlled trials and meta-analyses shows that *H. pylori* eradication reduces GC risk.^{3,4} In response, the International Agency for Research on Cancer (IARC) of the World Health Organization Working Group issued global guidance aimed at reducing the burden of GC, suggesting a prioritization of population-wide *H. pylori* screen-and-treat interventions.⁵

H. pylori screen-and-treat programs are being incrementally implemented in some GC high-risk Asian settings, such as the Matsu Islands, Bhutan, and Japan.^{6–8} Meanwhile, in Europe, *H. pylori* screen-and-treat programs have been endorsed by Europe's Beating Cancer Plan, with two European Union projects, including EU-ROHELICAN ("Accelerating Gastric Cancer Reduction in Europe through *H. pylori* Eradication") and TOGAS ("Towards Gastric Cancer Screening Implementation in the European Union"), investigating the outcomes of their implementation.^{5,9} Despite these encouraging regional initiatives, global implementation has progressed slowly. The IARC report underscored the need to tailor screen-and-treat strategies to local settings with diverse Human Development Index levels and disease burdens. Specifically, it recommended adopting population-wide *H. pylori* screen-and-treat programs in regions with intermediate to high incidence of GC, while prioritizing targeted approaches for low-incidence regions that focus on intermediate- and high-risk groups within selected administrative or geographical units.⁵ Consistent with this framework, the Taipei Global Consensus II recently advocated prioritizing *H. pylori* detection and eradication among individuals at elevated risk, including adult

residents of and immigrants from regions with high GC incidence.¹⁰ Prior to the implementation of a full program, however, the report emphasized the need for pilot projects to assess local feasibility and readiness, as program success depends on sustainable funding, available testing and treatment resources, adequate infrastructure, and maximized engagement of the target population.⁵

The Working Group Report outlined practical considerations for screen-and-treat program implementation, including selection of diagnostic tests and treatment regimens. Options for *H. pylori* detection include the ¹³C-urea breath test (UBT), stool antigen test (SAT), and serology test, and the choice should be guided by test performance, local *H. pylori* prevalence, operational feasibility, and budget constraints.⁵ When serology is used for initial screening, positive findings should be confirmed with ¹³C-UBT or SAT to distinguish current from past infection. Prior to *H. pylori* treatment, individuals with confirmed infection should receive counselling on potential adverse effects and the importance of adherence.⁵ Classic bismuth-containing quadruple therapy is recommended as a first-line option, and successful eradication should be confirmed using ¹³C-UBT or SAT at least four weeks after therapy completion. Vonoprazan–amoxicillin and high-dose proton pump inhibitor (PPI)–amoxicillin dual therapies have emerged as effective alternatives in East Asia, particularly in regions where bismuth, tetracycline, or the three-in-one single capsule is unavailable. These regimens are associated with fewer adverse effects and better compliance. However, given that these favorable outcomes have not yet been consistently replicated in European populations, further validation is required before they can be universally recommended outside Asian settings.

The report also underscored a clear imperative for the effective and sustainable implementation of population-based *H. pylori* screen-and-treat strategies. A central component of this implementation is robust antibiotic stewardship, given the rising threat of antimicrobial resistance. The Working Group emphasized that eradication regimens should be selected in accordance with local *H. pylori* resistance profiles and observed treatment effectiveness, supported by systematic follow-up testing of treated individuals to monitor eradication rates.⁵ Continuous resistance surveillance to build accurate local antibiograms, together with efforts to develop new antimicrobial agents, would be essential to sustain long-term program effectiveness. In the longer term, a prophylactic *H. pylori*

*Correspondence to: Wen-Qing Li, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing 100142, China. ORCID: <https://orcid.org/0000-0002-8336-5552>. Tel: +86-010-88194829, E-mail: wenqing_li@bjmu.edu.cn

[#]These authors contributed equally to this work.

How to cite this article: Hong CL, Liu ZC, Li WQ. Bridging IARC Guidance to Practice: Implementation of *Helicobacter pylori* Screen-and-Treat Strategies for Gastric Cancer Prevention. *Cancer Screen Prev* 2025;4(4):159–161. doi: 10.14218/CSP.2025.00027.

vaccine represents the most promising strategy to overcome the inherent limitations of antibiotic-based therapy, although current development remains at the preclinical stage.

To ensure high-quality and equitable delivery, population-based screen-and-treat programs require strong information infrastructure capable of capturing key performance metrics at each stage, such as invitation coverage, participation rates, test positivity, and eradication success. Achieving high participation and treatment adherence among populations with the greatest infection burden is particularly critical for maximizing equity. Besides, the economic rationale should also be considered. The Working Group concluded that *H. pylori* screening and treatment is cost-effective for GC prevention even in lower-incidence regions, and that optimizing local cost-benefit profiles will depend on decision modelling informed by data from pilot studies to identify the most appropriate, context-specific implementation strategies.⁵

Although the IARC framework provides a clear roadmap for population-based *H. pylori* screen-and-treat strategies, challenges remain in translating recommendations into real-world practice. Important knowledge gaps persist regarding the systemic consequences of *H. pylori* eradication on the gastrointestinal microbiome and risks of other chronic diseases, which may require large-scale longitudinal studies to fully elucidate. Moreover, the complexity of gastric carcinogenesis, shaped by the interplay among host genetics, environmental exposures, and *H. pylori* infection, leads to considerable heterogeneity in prevention outcomes. This highlights the limitations of the “one-size-fits-all” approach and underscores the need for precision primary prevention approaches.¹¹ Our recent studies demonstrated that the protective effect of *H. pylori* eradication was markedly stronger among individuals at high genetic risk.^{12,13} Accordingly, future clinical practice should integrate environmental exposures, genetic susceptibility, and host lifestyle factors for risk stratification. Such stratification is essential to identify the specific subpopulations that will derive the greatest preventive benefit from *H. pylori* eradication. Beyond individual-level precision approaches, household-level strategies are also gaining prominence.¹⁴ Given the well-established family clustering and intrafamilial transmission of *H. pylori*, a family-based screen-and-treat approach has emerged as a promising option.^{15,16} By testing and treating all family members of patients with GC or *H. pylori* infection, this approach yields higher eradication rates, lower reinfection rates, and better adherence to treatment.¹⁷ Nevertheless, further well-designed randomized trials are required to provide robust evidence for the widespread implementation of family-based *H. pylori* screening and treatment.

In brief, the path forward must involve an integration of cutting-edge research and pragmatic public health actions to transform the promise of *H. pylori* screen-and-treat strategies into a global reality of GC prevention. Ideally, screen-and-treat programs should be tailored to regional needs. This is best exemplified by the situation in China, a country with a dual burden of *H. pylori* infection and GC, which represents a pivotal environment for testing and scaling the IARC’s recommendations. Future efforts for GC prevention should concentrate on a phased strategy that prioritizes high-risk individuals before expanding to broader populations, while simultaneously refining risk prediction models for precision intervention. Success in this setting would not only advance local health goals but also provide essential blueprints for GC prevention worldwide.

Acknowledgments

None.

Funding

This work was supported by the Noncommunicable Chronic Diseases-National Science and Technology Major Project (2023ZD0501400-2023ZD0501402) and the National Natural Science Foundation of China (82273704).

Conflict of interest

One of the authors, Wen-Qing Li, serves as an associate editor of *Cancer Screening and Prevention*. The authors have no other conflicts of interest to note.

Author contributions

Study concept and design (CLH, ZCL, WQL), manuscript drafting (CLH, ZCL), and critical revision (WQL). All authors have made significant contributions to this study and have approved the final manuscript.

References

- Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *CA Cancer J Clin* 2024;74(3):229–263. doi:10.3322/caac.21834, PMID:38572751.
- Duan Y, Xu Y, Dou Y, Xu D. *Helicobacter pylori* and gastric cancer: mechanisms and new perspectives. *J Hematol Oncol* 2025;18(1):10. doi:10.1186/s13045-024-01654-2, PMID:39849657.
- Pan KF, Li WQ, Zhang L, Liu WD, Ma JL, Zhang Y, et al. Gastric cancer prevention by community eradication of *Helicobacter pylori*: a cluster-randomized controlled trial. *Nat Med* 2024;30(11):3250–3260. doi:10.1038/s41591-024-03153-w, PMID:39079993.
- Ford AC, Yuan Y, Park JY, Forman D, Moayyedi P. Eradication Therapy to Prevent Gastric Cancer in *Helicobacter pylori*-Positive Individuals: Systematic Review and Meta-Analysis of Randomized Controlled Trials and Observational Studies. *Gastroenterology* 2025;169(2):261–276. doi:10.1053/j.gastro.2024.12.033, PMID:39824392.
- Park JY, editor. Population-based *Helicobacter pylori* screen-and-treat strategies for gastric cancer prevention: guidance on implementation (IARC Working Group Reports No. 12). Lyon: International Agency for Research on Cancer; 2025.
- Chiang TH, Chang WJ, Chen SL, Yen AM, Fann JC, Chiu SY, et al. Mass eradication of *Helicobacter pylori* to reduce gastric cancer incidence and mortality: a long-term cohort study on Matsu Islands. *Gut* 2021;70(2):243–250. doi:10.1136/gutjnl-2020-322200, PMID:32792335.
- Dorji T, Wangmo S, Dargay S, Dorji N, Dorjee Y, Pradhan B, et al. Population-level cancer screening and cancer care in Bhutan, 2020–2023: a review. *Lancet Reg Health Southeast Asia* 2024;24:100370. doi:10.1016/j.lansea.2024.100370, PMID:38444883.
- Tsuda M, Asaka M, Kato M, Matsushima R, Fujimori K, Akino K, et al. Effect on *Helicobacter pylori* eradication therapy against gastric cancer in Japan. *Helicobacter* 2017;22(5):e12415. doi:10.1111/hel.12415, PMID:28771894.
- Leja M. Where are we with gastric cancer screening in Europe in 2024? *Gut* 2024;73(12):2074–2082. doi:10.1136/gutjnl-2024-332705, PMID:39237127.
- Liou JM, Malfertheiner P, Hong TC, Cheng HC, Sugano K, Shah S, et al. Screening and eradication of *Helicobacter pylori* for gastric cancer prevention: Taipei Global Consensus II. *Gut* 2025;74(11):1767–1791. doi:10.1136/gutjnl-2025-336027, PMID:40912906.
- Liu Z, Xu H, You W, Pan K, Li W. *Helicobacter pylori* eradication for primary prevention of gastric cancer: progresses and challenges. *J Natl Cancer Cent* 2024;4(4):299–310. doi:10.1016/j.jncc.2024.06.006, PMID:39735441.
- Xu HM, Han Y, Liu ZC, Yin ZY, Wang MY, Yu C, et al. *Helicobacter pylori*

Treatment and Gastric Cancer Risk Among Individuals With High Genetic Risk for Gastric Cancer. *JAMA Netw Open* 2024;7(5):e2413708. doi:10.1001/jamanetworkopen.2024.13708, PMID:38809553.

[13] Yin ZY, Xu HM, Wang MY, Wang XL, Liu ZC, Jin Y, *et al*. Integrating genetics and transcriptomics to decipher susceptibility genes for risk stratification of gastric cancer and effect modification of *Helicobacter pylori* treatment. *EBioMedicine* 2025;116:105767. doi:10.1016/j.ebiom.2025.105767, PMID:40424666.

[14] Zhou XZ, Lyu NH, Zhu HY, Cai QC, Kong XY, Xie P, *et al*. Large-scale, national, family-based epidemiological study on *Helicobacter pylori* infection in China: the time to change practice for related disease prevention. *Gut* 2023;72(5):855–869. doi:10.1136/gutjnl-2022-328965, PMID:36690433.

[15] Ding SZ. Global whole family based-*Helicobacter pylori* eradication strategy to prevent its related diseases and gastric cancer. *World J Gastroenterol* 2020;26(10):995–1004. doi:10.3748/wjg.v26.i10.995, PMID:32205991.

[16] Ding SZ, Du YQ, Lu H, Wang WH, Cheng H, Chen SY, *et al*. Chinese Consensus Report on Family-Based *Helicobacter pylori* Infection Control and Management (2021 Edition). *Gut* 2022;71(2):238–253. doi:10.1136/gutjnl-2021-325630, PMID:34836916.

[17] Zhao JB, Yuan L, Yu XC, Shao QQ, Ma J, Yu M, *et al*. Whole family-based *Helicobacter pylori* eradication is a superior strategy to single-infected patient treatment approach: A systematic review and meta-analysis. *Helicobacter* 2021;26(3):e12793. doi:10.1111/hel.12793, PMID:33675089.